If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-2000=0
a = 2; b = 10; c = -2000;
Δ = b2-4ac
Δ = 102-4·2·(-2000)
Δ = 16100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16100}=\sqrt{100*161}=\sqrt{100}*\sqrt{161}=10\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{161}}{2*2}=\frac{-10-10\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{161}}{2*2}=\frac{-10+10\sqrt{161}}{4} $
| -2.4(x-4)=13.5 | | 6x-7+4x=5x+5 | | 5p+22=-10 | | ((x+5)/4)*3=3x-3 | | 7x-2x^2=5 | | 4x+5-5=12 | | 8n^2=10n-4 | | 1/2(4x-10)/5=x-11 | | -20r-14r-15r+15r-14=2 | | 6x-6x+4=5x+12 | | x+3/2-9=2x-2/3 | | 5/9(f-32)=5 | | 7+4(b)=11(b) | | 1(30x-70)=3x+50 | | X=8+-0.4y | | 11-2x=x^2+4x+4 | | (x+5)/4*3=3x-3 | | 25+5w=30.76+3w | | 4x+5(39/13)=11 | | 6p+-8p+9p-15p+12p+-14=20 | | h(50+80)=310 | | 4x+83=41 | | x/4-8=-16 | | 5x-6=78 | | 5+w/5=10.25+w/3 | | 8.5-1.2x=5.7 | | 3x/14-1=x/7+2 | | 7x+19=30 | | 4x+8+62+5x-7=180 | | 8h-4h+2h-4h-h-1=5 | | 5+w=10.25+w | | 7n+3(n+1)=83 |